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Matrices and linear solvers

• How can we solve Ax = b? 

• Direct methods: Gaussian elimination, LU and QR 
factorizations: O(n3) 

• Iterative methods: GMRES, Conjugate Gradient, 
MINRES, etc



Iterative Methods
• Iterative methods can be very fast. 

• They rely primarily on matrix-vector products Ax. 

• If A is sparse this can be done very quickly. 

• However, the convergence of iterative methods 
depends on the distribution of eigenvalues. 

• So it may be quite slow in many instances.



Conjugate Gradient
• In the case of conjugate gradient, the convergence 

analysis is quite simplified. 

• The key result is as follows:
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Canonical cases

• If all the eigenvalues are clustered around a few  
points (say around 1), then convergence is fast. 

• Just place all the roots of p inside each cluster of 
eigenvalues.



Ill-conditioned case
• Recall that p(0) = 1. 

• So if some eigenvalues are very close to 0, while 
others are far away, it is difficult to minimize p(𝜆). 

• For CG: 
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Preconditioners

• Most engineering matrices are not well-conditioned 
and have eigenvalues that are not well distributed. 

• To solve such systems, a preconditioner is 
required. 

• The effect of the preconditioner will be to regroup 
the eigenvalues into a few clusters.



Hierarchical solvers
• Hierarchical solvers offer a bridge between direct 

and iteration solvers. 

• They lead to efficient preconditioners suitable for 
iterative techniques. 

• They are based on approximate direct 
factorizations of the matrix.

• Computational cost is O(n) for many 
applications (depending on properties of matrix).



Cost of factorization
• The problem with direct methods and matrix 

factorization is that they lead to a large computational 
cost. 

• Matrix of size n: cost is O(n3). 

• This problem can be mitigated for sparse matrices with 
many zeros. 

• Hierarchical solvers offer a trade-off between 
computational cost and accuracy for direct 
methods.



Factorization for sparse 
matrices

Assume we start from a sparse matrix and perform 
one step of a block LU factorization:
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Sparsification

• Hierarchical methods attempt to maintain the 
sparsity of the matrix to prevent the fill-in we just 
discovered. 

• How does it work?



Low-rank
• The basic mechanism is to take advantage of the 

fact that dense blocks can often be approximated 
by a low-rank matrix. 

• This is not always true though. We will investigate 
this in more details during the tutorial session. 

• Canonical case: for elliptic PDEs, this low-rank 
property is always observed for clusters of points in 
the mesh that are well-separated (à la fast 
multipole method).



What is a low-rank matrix?

=

Matrix A r columns r rows

May not be exact



LU

• LU factorizations are a great tool for low-rank 
matrices. 

• Assume we have a low-rank matrix and we perform 
an LU factorization (with full pivoting). 

• What happens?



LU for low-rank

All zero!



Low-rank factorization
In fact, LU directly produces a factorization of the 
form:

x

L factor U factor



How can we use this?

• Let’s see how we can apply this to remove entries 
in our matrix. 

• Recall that the factorization leads to a lot of fill-in. 

• LU comes to the rescue to restore sparsity!



Matrix with low-rank block

Low-rank block



Create a new block of 0

New zero 
entries

Apply row 
transformations 

from LU



Sparsity
The fast factorization scheme proceeds as follows: 

• Perform a Cholesky or LU factorization. 

• When a new fill-in occurs in a block corresponding 
to well-separated nodes (say in the mesh for a 
discretized PDE), use row transformations to 
sparsify the matrix.

This process allows factoring A into a 
product of completely sparse matrices!



Connection to multigrid
• This method can be connected to multigrid. 

• Assume we partition our graph:



Sparse elimination

• Start a block elimination, following the cluster 
partitioning shown previously. 

• Whenever fill-in occur, we sparsify it. 

• What does this mean?



Low-rank fill-in

Rest of matrix is sparse



Row and column 
transformations



Row/Column permutation



Fine/Coarse
• Elimination of these 

nodes does not 
create any new fill-in 

• These are multigrid 
fine nodes.

• These are 
multigrid coarse 
nodes.

• They will be 
eliminated at the 
next round.





Benchmarks 
Convergence of iterative methods

• Examples of convergence behavior. 

• For conjugate gradient and symmetric positive 
definite matrices, the eigenvalues are real and 
positive. This leads to a simple convergence 
behavior, based on the condition number.



Unsymmetric systems
• For unsymmetric systems, convergence is more 

challenging.  

• Condition number is still an important factor. 

• However, clustering of the eigenvalues is critical. 

• An interesting case is eigenvalues distributed on the 
unit circle. 

• The condition number is 1. But convergence is still 
slow because of the lack of clustering.
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Preconditioning benchmark

• Let’s see how this works in practice. 

• Radiative transfer equation:

DISCRETE ORDINATES IN SIMULTANEOUS FORM

ARI FRANKEL

1. Bare minimum physics

The radiative transfer equation solving for the intensity I(x, y, z, ŝ) is
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Some other definitions:

The unit vector ŝ, defining the direction along which the radiation streams. Let ✓ be
the polar angle, and � be the azimuthal angle in spherical coordinates.
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Note that the direction vector does not depend on space, whereas the coe�cient �

e

is a
function of space.

The solid angle ⌦, where
Z

4⇡
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The RTE is a partial di↵ero-integral equation, and it needs a boundary condition. At
a surface with temperature T

w
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The right-hand side integral is taken over all incoming directions. For PSAAP purposes,
the surfaces do not reflect any energy, so we can simplify this down (for now) to
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In an earlier experimental setup, one lamp side was going to be irradiated with an array
of lamps. To model this, I was using the e↵ective temperature of the lamps concentrated

1

Unknown: radiation intensity



ILU preconditioning
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Boundary element method
• We solve the Helmholtz equation using the 

boundary element method. 

• This uses an integral formulation:



Three geometries 
w/ Toru Takahashi, Pieter Coulier



Numerical results: Woman’s head

Point Jacobi vs 
iFMM (H solver)



Frequency sweep

Point Jacobi vs iFMM (H solver)



Standing horse



TV in the living room



Indefinite systems 
w/ Kai Yang

• No good preconditioner exists for these problems. 

• ILU and MG/AMG fail for these matrices. 

• 𝜆 is chosen from the interval [𝜆min, 𝜆max] for the 
Laplacian. 

• 2D Poisson with 10k points.

4u� �u = f



Convergence of H solver

Various eigenvalue shifts



Frequency sweep

Mid 
5 𝜆

High 
40 𝜆



Software sample
• w/ Hadi Pouransari:  

https://bitbucket.org/hadip/lorasp  
Lorasp: hierarchical linear solver for sparse 
matrices. 

• w/ Pieter Coulier: hierarchical linear solver for 
dense matrices; iFMM. Requires an FMM 
formulation (e.g., BEM, integral equation) 

• w/ Toru Takahashi: fast Helmholtz solver using 
hierarchical matrices.

https://bitbucket.org/hadip/lorasp
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Hands-on

• Log on 
https://juliabox.org/ 

• Run sample code to see that everything works for 
you.

https://juliabox.org/


Lab 1: convergence of iterative 
solvers

• We create matrices with different eigenvalue 
distributions. 

• The linear system is solved using GMRES.



Eigenvalue distributions

• Try out these different cases. 

• What do you observe? How fast is the 
convergence? Can you explain your observations?



Distribution #1



Distribution #2

Can you make GMRES convergence very slowly by 
changing x_shift?



Distribution #3

This matrix corresponds to rotations in different planes.



Try playing around with other 
eigenvalue distributions!



Hierarchical Matrices
• One fundamental property we use in hierarchical 

matrix calculation is that the Schur complement 
can be compressed during an LU/Cholesky 
factorization. 

• Is that true in practice? 

• What types of PDE satisfy this compression 
property? 

• Let’s investigate.



PDE solver
• Consider a regular mesh and a 5 point stencil for: 

• Let’s do a Gaussian elimination (e.g., LU) on some 
part of the grid.

�k2 T + e ·rT �Dr2T = RHS



Schematic view of a 2D grid, 
partitioned into 9 subdomains



• Eliminate the center domain of the grid 
• LU factorization where we eliminate rows & 

columns associated with the center domain



• Points on the left and right boundaries become all 
connected. 

• This forms a dense block in the matrix. 
• A key assumption in Hierarchical Solvers is that this 

matrix must have low-rank blocks. 
• Is that in fact the case?
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Set up of benchmark
• Matrix of system, focusing on the 3 clusters, in the 

middle row: 
 
 
 
 
 
C: center; L: left; R: right 

• Let’s eliminate ACC
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Low-rank assumption

• For hierarchical solvers to be efficient, this block 
should be low-rank. 

• Let’s test this.
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Case #1
Pure diffusion equation. 

k  = 0         # shift

D  = 1         # diffusion

ex = 0         # velocities

ey = 0



Case #2
Convection dominated 

k  = 0         # shift

D  = 0.01      # diffusion

ex 0.1 1 1
ey 1 1 0.1



Case #3
Oscillatory system 

D  = 1      # diffusion

ex = ey = 0 # velocity

k 0.1 0.5 2.5


