Hierarchical Solvers

Eric Darve CM4 Summer School June 2016

Matrices and linear solvers

- How can we solve Ax = b?
- Direct methods: Gaussian elimination, LU and QR factorizations: O(n³)
- Iterative methods: GMRES, Conjugate Gradient, MINRES, etc

Iterative Methods

- Iterative methods can be very fast.
- They rely primarily on matrix-vector products Ax.
- If A is sparse this can be done very quickly.
- However, the convergence of iterative methods depends on the distribution of eigenvalues.
- So it may be quite slow in many instances.

Conjugate Gradient

- In the case of conjugate gradient, the convergence analysis is quite simplified.
- The key result is as follows:

Error at step n

 $\begin{array}{c|c|c|c|c|c|}
\hline & e_n \\ \hline & e_n \\ \hline & e_0 \\ \hline & e_0 \\ \hline & e_0 \\ \hline & A \end{array} \le \inf_{p \in P_n} \max_{\lambda \in \Lambda(A)} |p(\lambda)|
\end{array}$

 $p \in P_n$: polynomials of degree less than n with p(0) = 1 $\Lambda(A)$ is the set of all eigenvalues of A.

Canonical cases

- If all the eigenvalues are clustered around a few points (say around 1), then convergence is fast.
- Just place all the roots of p inside each cluster of eigenvalues.

Ill-conditioned case

- Recall that p(0) = 1.
- So if some eigenvalues are very close to 0, while others are far away, it is difficult to minimize $p(\lambda)$.
- For CG:

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^n \sim 2\left(1-2/\sqrt{k}\right)^n$$

Difficulty when condition number κ is larg

Preconditioners

- Most engineering matrices are not well-conditioned and have eigenvalues that are not well distributed.
- To solve such systems, a preconditioner is required.
- The effect of the preconditioner will be to regroup the eigenvalues into a few clusters.

Hierarchical solvers

- Hierarchical solvers offer a bridge between direct and iteration solvers.
- They lead to efficient preconditioners suitable for iterative techniques.
- They are based on approximate direct factorizations of the matrix.
- Computational cost is O(n) for many applications (depending on properties of matrix).

Cost of factorization

- The problem with direct methods and matrix factorization is that they lead to a large computational cost.
- Matrix of size n: cost is O(n³).
- This problem can be mitigated for sparse matrices with many zeros.
- Hierarchical solvers offer a trade-off between computational cost and accuracy for direct methods.

Factorization for sparse matrices

Assume we start from a sparse matrix and perform one step of a block LU factorization:

$$A = \begin{pmatrix} I \\ UA_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} \\ 0 & A_{22} - UA_{11}^{-1}U^T \end{pmatrix} \begin{pmatrix} I & A_{11}^{-1}U^T \\ & I \end{pmatrix}$$

This block may have a lot of new non-zero entries

Sparsification

- Hierarchical methods attempt to maintain the sparsity of the matrix to prevent the fill-in we just discovered.
- How does it work?

Low-rank

- The basic mechanism is to take advantage of the fact that dense blocks can often be approximated by a low-rank matrix.
- This is not always true though. We will investigate this in more details during the tutorial session.
- Canonical case: for elliptic PDEs, this low-rank property is always observed for clusters of points in the mesh that are well-separated (à la fast multipole method).

What is a low-rank matrix?

May not be exact

Matrix A

r columns

LU

- LU factorizations are a great tool for low-rank matrices.
- Assume we have a low-rank matrix and we perform an LU factorization (with full pivoting).
- What happens?

LU for low-rank

Low-rank factorization

In fact, LU directly produces a factorization of the form:

L factor

U factor

How can we use this?

- Let's see how we can apply this to remove entries in our matrix.
- Recall that the factorization leads to a lot of fill-in.
- LU comes to the rescue to restore sparsity!

Matrix with low-rank block

Create a new block of 0

Sparsity

The fast factorization scheme proceeds as follows:

- Perform a Cholesky or LU factorization.
- When a new fill-in occurs in a block corresponding to well-separated nodes (say in the mesh for a discretized PDE), use row transformations to sparsify the matrix.

This process allows factoring A into a product of completely sparse matrices!

Connection to multigrid

- This method can be connected to multigrid.
- Assume we partition our graph:

Sparse elimination

- Start a block elimination, following the cluster partitioning shown previously.
- Whenever fill-in occur, we sparsify it.
- What does this mean?

Row and column transformations

Row/Column permutation

Fine/Coarse

- Elimination of these nodes does not create any new fill-in These are multigrid fine nodes. These are multigrid coarse nodes.
- They will be eliminated at the next round.

Benchmarks Convergence of iterative methods

- Examples of convergence behavior.
- For conjugate gradient and symmetric positive definite matrices, the eigenvalues are real and positive. This leads to a simple convergence behavior, based on the condition number.

Unsymmetric systems

- For unsymmetric systems, convergence is more challenging.
- Condition number is still an important factor.
- However, clustering of the eigenvalues is critical.
- An interesting case is eigenvalues distributed on the unit circle.
- The condition number is 1. But convergence is still slow because of the lack of clustering.

Preconditioning benchmark

- Let's see how this works in practice.
- Radiative transfer equation:

ILU preconditioning

Boundary element method

- We solve the Helmholtz equation using the boundary element method.
- This uses an integral formulation:

$$\begin{split} & \frac{1}{2}u(\boldsymbol{x}) + \int_{S} \left(\frac{\partial\Gamma}{\partial n_{y}}(\boldsymbol{x}, \boldsymbol{y})u(\boldsymbol{y}) - \Gamma(\boldsymbol{x} - \boldsymbol{y})q(\boldsymbol{y}) \right) \mathrm{d}S_{y} \\ & + \quad \beta \left\{ \frac{1}{2}q(\boldsymbol{x}) + \int_{S} \left(\frac{\partial^{2}\Gamma}{\partial n_{x}\partial n_{y}}(\boldsymbol{x}, \boldsymbol{y})u(\boldsymbol{y}) - \frac{\partial\Gamma}{\partial n_{x}}(\boldsymbol{x}, \boldsymbol{y})q(\boldsymbol{y}) \right) \mathrm{d}S_{y} \right\} = u^{\mathrm{I}}(\boldsymbol{x}) + \beta q^{\mathrm{I}}(\boldsymbol{x}) \end{split}$$

- k: wavenumber
- u: pressure field
- $q = \frac{\partial u}{\partial n}$: flux
- $\Gamma(\boldsymbol{x}) = \frac{\exp{(ik|\boldsymbol{x}|)}}{4\pi|\boldsymbol{x}|}$: fundamental solution of the Helmholtz equation
- $\beta = i/k$: coefficient that makes the integral equation free from fictitious eigenvalues
- u^{I} , $q^{\mathrm{I}} = \frac{\partial u^{\mathrm{I}}}{\partial n}$: incident field

Three geometries w/ Toru Takahashi, Pieter Coulier

Name	Boundary conditions	Incident field	# elements
Head Horse House	$\left egin{array}{c} q=0 \ ({ m everywhere})\ q=0 \ ({ m everywhere})\ u=1 \ ({ m on \ TV}), \ q=0 \ ({ m everywhere \ else}) \end{array} ight.$	$egin{aligned} u^{\mathrm{I}}(oldsymbol{x}) &= \exp\left(ikx_3 ight)\ u^{\mathrm{I}}(oldsymbol{x}) &= \exp\left(ikx_1 ight)\ N/A \end{aligned}$	$64,944 \\190,156 \\147,168$

Numerical results: Woman's head

2158

 2.0×10^{-5}

3.2

84

iFMM ($\varepsilon = 10^{-4}$)

3

2242

Frequency sweep

k	# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_2 -error [-]
1	<mark>91 / 5</mark>	1370 / 215	<mark>4</mark> / 125	1366 / 90	6.4	$7.5 imes 10^{-6}$
2	<mark>86</mark> / 9	1 <mark>304</mark> / 308	<mark>4</mark> / 157	1300 / 151	4.2	1.3×10^{-5}
4	77 / 8	1182 / 313	<mark>3</mark> / 176	1179 / 137	3.8	$9.3 imes 10^{-6}$
8	<mark>88</mark> / 6	1384 / 325	<mark>4</mark> / 216	1380 / 109	4.3	$9.2 imes 10^{-6}$
16	147 / 5	2420 / 432	<mark>9</mark> / 333	<mark>24</mark> 11 / 99	5.6	1.5×10^{-5}
32	<mark>343</mark> / 6	7091 / 922	<mark>39</mark> / 774	7052 / 148	7.7	$2.0 imes 10^{-5}$

Point Jacobi vs iFMM (H solver)

Standing horse

k	# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_2 -error [-]
1	203 / 8	7487 / 572	<mark>43</mark> / 245	7444 / 327	13.1	1.3×10^{-5}
2	157 / 9	5960 / 632	<mark>25</mark> / 268	5935 / 364	9.4	$1.3 imes 10^{-5}$
4	123 / 11	4546 / 794	17 / 353	4529 / 441	5.7	$9.5 imes 10^{-6}$
8	115/9	4290 / 754	<mark>16</mark> / 384	<mark>4274</mark> / 370	5.7	$1.2 imes 10^{-5}$
16	1 <u>20</u> / 7	4561 / 728	17 / 426	<mark>4544</mark> / 302	6.3	$1.1 imes 10^{-5}$
32	185 / 9	7553 / 1155	<mark>38</mark> / 748	7515 / 407	6.5	$1.3 imes 10^{-5}$

TV in the living room

k	# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_2 -error [-]
1	90 / 6	1869 / 419	7 / 275	1861 / 144	4.5	$2.9 imes 10^{-3}$
2	140 / 5	2921 / 453	16 / 329	2905 / 124	6.4	$1.3 imes 10^{-3}$
4	269 / 5	5777 / 695	<mark>45</mark> / 567	5732 / 128	8.3	$1.1 imes 10^{-2}$
8	583 / 10	13673 / 1378	189 / 1123	13484 / 255	9.9	$2.3 imes 10^{-3}$
16	1384 / 19	45839 / 3389	1008 / 2733	44831 / 656	13.5	2.8×10^{-3}

Indefinite systems w/ Kai Yang
$$\Delta u - \lambda u = f$$

- No good preconditioner exists for these problems.
- ILU and MG/AMG fail for these matrices.
- λ is chosen from the interval [$\lambda_{\text{min}},\,\lambda_{\text{max}}$] for the Laplacian.
- 2D Poisson with 10k points.

Convergence of H solver

Problem	setup time (s)	solve $time(s)$	number of iterations
A1	0.46	0.09	9
A2	0.56	0.21	18
A3	0.65	0.2	16
A4	0.72	0.14	11
A5	0.7	0.14	11
A6	0.64	0.25	20
A7	0.56	0.18	15
A8	0.46	0.11	10
K			

Various eigenvalue shifts

Frequency sweep

	# of unknowns	tree depth	ϵ	setup (s)	solve (s)	# of iterations	largest size of red node
Mid	2.5k	7	1e-3	0.07	0.03	24	19
			1e-4	0.1	0.01	8	19
5λ			1e-5	0.1	0.01	4	19
• • •			1e-6	0.1	0.01	3	19
	10k	9	1e-4	0.62	0.2	17	28
			1e-5	0.64	0.07	6	29
			1e-6	0.66	0.05	4	33
	40k	11	1e-5	4.49	0.57	9	70
Hiah			1e-6	4.66	0.46	7	71
	160k	13	1e-6	35.23	12.63	41	112
40 λ							

Software sample

- w/ Hadi Pouransari: <u>https://bitbucket.org/hadip/lorasp</u>
 Lorasp: hierarchical linear solver for sparse matrices.
- w/ Pieter Coulier: hierarchical linear solver for dense matrices; iFMM. Requires an FMM formulation (e.g., BEM, integral equation)
- w/ Toru Takahashi: fast Helmholtz solver using hierarchical matrices.

References

- Fast hierarchical solvers for sparse matrices using low-rank approximation, Hadi Pouransari, Pieter Coulier, Eric Darve; arXiv: 1510.07363, <u>http://arxiv.org/abs/1510.07363</u>
- The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems; Pieter Coulier, Hadi Pouransari, Eric Darve; arXiv:1508.01835
 <u>http://arxiv.org/abs/1508.01835</u>
- Aminfar, A., and E. Darve. "A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite-element matrices." *Int. J. Num. Meth. Eng.* (2016): doi 10.1002/nme.5196

Hands-on

- Log on <u>https://juliabox.org/</u>
- Run sample code to see that everything works for you.

Lab 1: convergence of iterative solvers

- We create matrices with different eigenvalue distributions.
- The linear system is solved using GMRES.

Eigenvalue distributions

- Try out these different cases.
- What do you observe? How fast is the convergence? Can you explain your observations?

Distribution #1

Distribution #2

Can you make GMRES convergence very slowly by changing x_shift?

Distribution #3

This matrix corresponds to rotations in different planes.

Try playing around with other eigenvalue distributions!

Hierarchical Matrices

- One fundamental property we use in hierarchical matrix calculation is that the Schur complement can be compressed during an LU/Cholesky factorization.
- Is that true in practice?
- What types of PDE satisfy this compression property?
- Let's investigate.

PDE solver

• Consider a regular mesh and a 5 point stencil for:

$$-k^2 T + e \cdot \nabla T - D\nabla^2 T = \text{RHS}$$

 Let's do a Gaussian elimination (e.g., LU) on some part of the grid.

Schematic view of a 2D grid, partitioned into 9 subdomains

- Eliminate the center domain of the grid
- LU factorization where we eliminate rows & columns associated with the center domain

$$A = \begin{pmatrix} I \\ UA_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} I & A_{11}^{-1}U^T \\ I & I \end{pmatrix} \begin{pmatrix} I & A_{11}^{-1}U^T \\ I \end{pmatrix}$$

- Points on the left and right boundaries become all connected.
- This forms a **dense block** in the matrix.
- A key assumption in Hierarchical Solvers is that this matrix must have low-rank blocks.
- Is that in fact the case?

Set up of benchmark

Matrix of system, focusing on the 3 clusters, in the middle row:

$$\begin{pmatrix} A_{CC} & A_{CL} & A_{CR} \\ A_{LC} & A_{LL} & 0 \\ A_{RC} & 0 & A_{RR} \end{pmatrix}$$

C: center; L: left; R: right

• Let's eliminate Acc

Low-rank assumption

- For hierarchical solvers to be efficient, this block should be low-rank.
- Let's test this.

Case #1

Pure diffusion equation.

- k = 0 # shift D = 1 # diffusion
- ex = 0 # velocities

ey = 0

Case #2

Convection dominated

- D = 0.01 # diffusion

ex0.111ey110.1

Case #3

Oscillatory system

D = 1 # diffusion

ex = ey = 0 # velocity

k 0.1 0.5 2.5

