Hierarchical Solvers

Eric Darve

> CM4 Summer School June 2016

Matrices and linear solvers

- How can we solve $A x=b$?
- Direct methods: Gaussian elimination, LU and QR factorizations: O(n³)
- Iterative methods: GMRES, Conjugate Gradient, MINRES, etc

Iterative Methods

- Iterative methods can be very fast.
- They rely primarily on matrix-vector products Ax.
- If A is sparse this can be done very quickly.
- However, the convergence of iterative methods depends on the distribution of eigenvalues.
- So it may be quite slow in many instances.

Conjugate Gradient

- In the case of conjugate gradient, the convergence analysis is quite simplified.
- The key result is as follows:

Error at step n

$p \in P_{n}$: polynomials of degree less than n with $p(0)=1$ $\Lambda(A)$ is the set of all eigenvalues of A.

Canonical cases

- If all the eigenvalues are clustered around a few points (say around 1), then convergence is fast.
- Just place all the roots of p inside each cluster of eigenvalues.

III-conditioned case

- Recall that $p(0)=1$.
- So if some eigenvalues are very close to 0 , while others are far away, it is difficult to minimize $p(\lambda)$.
- For CG:

$$
\frac{\left\|e_{n}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n} \sim 2(1-2 / \sqrt{k})^{n}
$$

Difficulty when condition number κ is large

Preconditioners

- Most engineering matrices are not well-conditioned and have eigenvalues that are not well distributed.
- To solve such systems, a preconditioner is required.
- The effect of the preconditioner will be to regroup the eigenvalues into a few clusters.

Hierarchical solvers

- Hierarchical solvers offer a bridge between direct and iteration solvers.
- They lead to efficient preconditioners suitable for iterative techniques.
- They are based on approximate direct factorizations of the matrix.
- Computational cost is $O(n)$ for many applications (depending on properties of matrix).

Cost of factorization

- The problem with direct methods and matrix factorization is that they lead to a large computational cost.
- Matrix of size $\mathrm{n}:$ cost is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
- This problem can be mitigated for sparse matrices with many zeros.
- Hierarchical solvers offer a trade-off between computational cost and accuracy for direct methods.

Factorization for sparse matrices

Assume we start from a sparse matrix and perform one step of a block LU factorization:

$$
A=\left(\begin{array}{cc}
I & \\
U A_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} \\
0 & A_{2}-U A_{11}^{-1} U^{T}
\end{array}\right)\left(\begin{array}{cc}
I & A_{11}^{-1} U^{T} \\
& I
\end{array}\right)
$$

This block may have a lot of new non-zero entries

Sparsification

- Hierarchical methods attempt to maintain the sparsity of the matrix to prevent the fill-in we just discovered.
- How does it work?

Low-rank

- The basic mechanism is to take advantage of the fact that dense blocks can often be approximated by a low-rank matrix.
- This is not always true though. We will investigate this in more details during the tutorial session.
- Canonical case: for elliptic PDEs, this low-rank property is always observed for clusters of points in the mesh that are well-separated (à la fast multipole method).

What is a low-rank matrix?

May not be exact

Matrix A
r columns
r rows

LU

- LU factorizations are a great tool for low-rank matrices.
- Assume we have a low-rank matrix and we perform an LU factorization (with full pivoting).
- What happens?

LU for low-rank

All zero!

Low-rank factorization

In fact, LU directly produces a factorization of the form:

How can we use this?

- Let's see how we can apply this to remove entries in our matrix.
- Recall that the factorization leads to a lot of fill-in.
- LU comes to the rescue to restore sparsity!

Matrix with low-rank block

Create a new block of 0

Apply row transformations \longrightarrow from LU

New zero entries

Sparsity

The fast factorization scheme proceeds as follows:

- Perform a Cholesky or LU factorization.
- When a new fill-in occurs in a block corresponding to well-separated nodes (say in the mesh for a discretized PDE), use row transformations to sparsify the matrix.

This process allows factoring A into a product of completely sparse matrices!

Connection to multigrid

- This method can be connected to multigrid.
- Assume we partition our graph:

Sparse elimination

- Start a block elimination, following the cluster partitioning shown previously.
- Whenever fill-in occur, we sparsify it.
-What does this mean?

Row and column transformations

Row/Column permutation

Fine/Coarse

- Elimination of these nodes does not create any new fill-in
- These are multigrid fine nodes.
- These are multigrid coarse nodes.
- They will be eliminated at the next round.

Benchmarks

Convergence of iterative methods

- Examples of convergence behavior.
- For conjugate gradient and symmetric positive definite matrices, the eigenvalues are real and positive. This leads to a simple convergence behavior, based on the condition number.

Unsymmetric systems

- For unsymmetric systems, convergence is more challenging.
- Condition number is still an important factor.
- However, clustering of the eigenvalues is critical.
- An interesting case is eigenvalues distributed on the unit circle.
- The condition number is 1 . But convergence is still slow because of the lack of clustering.

Preconditioning benchmark

- Let's see how this works in practice.
- Radiative transfer equation:

Unknown: radiation intensity

ILU preconditioning

Boundary element method

- We solve the Helmholtz equation using the boundary element method.
- This uses an integral formulation:

$$
\begin{aligned}
& \frac{1}{2} u(\boldsymbol{x})+\int_{S}\left(\frac{\partial \Gamma}{\partial n_{y}}(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y})-\Gamma(\boldsymbol{x}-\boldsymbol{y}) q(\boldsymbol{y})\right) \mathrm{d} S_{y} \\
+ & \beta\left\{\frac{1}{2} q(\boldsymbol{x})+\int_{S}\left(\frac{\partial^{2} \Gamma}{\partial n_{x} \partial n_{y}}(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y})-\frac{\partial \Gamma}{\partial n_{x}}(\boldsymbol{x}, \boldsymbol{y}) q(\boldsymbol{y})\right) \mathrm{d} S_{y}\right\}=u^{\mathrm{I}}(\boldsymbol{x})+\beta q^{\mathrm{I}}(\boldsymbol{x})
\end{aligned}
$$

- k : wavenumber
- u : pressure field
- $q=\frac{\partial u}{\partial n}$: flux
- $\Gamma(\boldsymbol{x})=\frac{\exp (i k|\boldsymbol{x}|)}{4 \pi|\boldsymbol{x}|}$: fundamental solution of the Helmholtz equation
- $\beta=i / k$: coefficient that makes the integral equation free from fictitious eigenvalues
- $u^{\mathrm{I}}, q^{\mathrm{I}}=\frac{\partial u^{\mathrm{I}}}{\partial n}$: incident field

Three geometries

w/ Toru Takahashi, Pieter Coulier

Name	Boundary conditions	Incident field	\# elements
Head	$q=0$ (everywhere)	$u^{\mathrm{I}}(\boldsymbol{x})=\exp \left(i k x_{3}\right)$	64,944
Horse	$q=0$ (everywhere)	$u^{\mathrm{I}}(\boldsymbol{x})=\exp \left(i k x_{1}\right)$	190,156
House	$u=1$ (on TV), $q=0$ (everywhere else)	N/A	147,168

Numerical results: Woman's head

■ Sound pressure field $\operatorname{Re}(u(\boldsymbol{x}))$ for $k=32$

Point Jacobi vs iFMM (H solver)

- (a) Relative residual and (b) computation time

(a)

PC	\# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_{2}-error [-]
PJ	343	7091	39	7052		
iFMM $\left(\varepsilon=10^{-2}\right)$	6	922	774	148	$\mathbf{7 . 7}$	2.0×10^{-5}
iFMM $\left(\varepsilon=10^{-3}\right)$	4	1521	1471	104	4.7	2.0×10^{-5}
iFMM $\left(\varepsilon=10^{-4}\right)$	3	2242	2158	84	$\mathbf{3 . 2}$	2.0×10^{-5}

Frequency sweep

k	\# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_{2}-error [-]
1	$91 / 5$	$1370 / 215$	$4 / 125$	$1366 / 90$	$\mathbf{6 . 4}$	7.5×10^{-6}
2	$86 / 9$	$1304 / 308$	$4 / 157$	$1300 / 151$	$\mathbf{4 . 2}$	1.3×10^{-5}
4	$77 / 8$	$1182 / 313$	$3 / 176$	$1179 / 137$	$\mathbf{3 . 8}$	9.3×10^{-6}
8	$88 / 6$	$1384 / 325$	$4 / 216$	$1380 / 109$	4.3	9.2×10^{-6}
16	$147 / 5$	$2420 / 432$	$9 / 333$	$2411 / 99$	$\mathbf{5 . 6}$	1.5×10^{-5}
32	$343 / 6$	$7091 / 922$	$39 / 774$	$7052 / 148$	$\mathbf{7 . 7}$	2.0×10^{-5}

Point Jacobi vs iFMM (H solver)

Standing horse

k	\# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_{2}-error [-]
1	$203 / 8$	$7487 / 572$	$43 / 245$	$7444 / 327$	$\mathbf{1 3 . 1}$	1.3×10^{-5}
2	$157 / 9$	$5960 / 632$	$25 / 268$	$5935 / 364$	$\mathbf{9 . 4}$	1.3×10^{-5}
4	$123 / 11$	$4546 / 794$	$17 / 353$	$4529 / 441$	$\mathbf{5 . 7}$	9.5×10^{-6}
8	$115 / 9$	$4290 / 754$	$16 / 384$	$4274 / 370$	$\mathbf{5 . 7}$	1.2×10^{-5}
16	$120 / 7$	$4561 / 728$	$17 / 426$	$4544 / 302$	$\mathbf{6 . 3}$	1.1×10^{-5}
32	$185 / 9$	$7553 / 1155$	$38 / 748$	$7515 / 407$	$\mathbf{6 . 5}$	1.3×10^{-5}

TV in the living room

k	\# iter	total time [s]	precon. [s]	matvec. [s]	speed-up	l_{2}-error [-]
1	$90 / 6$	$1869 / 419$	$7 / 275$	$1861 / 144$	$\mathbf{4 . 5}$	2.9×10^{-3}
2	$140 / 5$	$2921 / 453$	$16 / 329$	$2905 / 124$	$\mathbf{6 . 4}$	1.3×10^{-3}
4	$269 / 5$	$5777 / 695$	$45 / 567$	$5732 / 128$	$\mathbf{8 . 3}$	1.1×10^{-2}
8	$583 / 10$	$13673 / 1378$	$189 / 1123$	$13484 / 255$	$\mathbf{9 . 9}$	2.3×10^{-3}
16	$1384 / 19$	$45839 / 3389$	$1008 / 2733$	$44831 / 656$	$\mathbf{1 3 . 5}$	2.8×10^{-3}

Indefinite systems w/ Kai Yang
 $$
\triangle u-\lambda u=f
$$

- No good preconditioner exists for these problems.
- ILU and MG/AMG fail for these matrices.
- λ is chosen from the interval $\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]$ for the Laplacian.
- 2D Poisson with 10k points.

Convergence of H solver

Problem	setup time (s)	solve time(s)	number of iterations
A1	0.46	0.09	9
A2	0.56	0.21	18
A3	0.65	0.2	16
A4	0.72	0.14	11
A5	0.7	0.14	11
A6	0.64	0.25	20
A7	0.56	0.18	15
A8	0.46	0.11	10

Frequency sweep

Software sample

- w/ Hadi Pouransari:
https://bitbucket.org/hadip/lorasp Lorasp: hierarchical linear solver for sparse matrices.
- w/ Pieter Coulier: hierarchical linear solver for dense matrices; iFMM. Requires an FMM formulation (e.g., BEM, integral equation)
- w/ Toru Takahashi: fast Helmholtz solver using hierarchical matrices.

References

- Fast hierarchical solvers for sparse matrices using low-rank approximation, Hadi Pouransari, Pieter Coulier, Eric Darve; arXiv: 1510.07363, http://arxiv.org/abs/1510.07363
- The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems; Pieter Coulier, Hadi Pouransari, Eric Darve; arXiv:1508.01835 http://arxiv.org/abs/1508.01835
- Aminfar, A., and E. Darve. "A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite-element matrices." Int. J. Num. Meth. Eng. (2016): doi 10.1002/nme. 5196

Hands-on

- Log on https://juliabox.org/
- Run sample code to see that everything works for you.

Lab 1: convergence of iterative solvers

- We create matrices with different eigenvalue distributions.
- The linear system is solved using GMRES.

Eigenvalue distributions

- Try out these different cases.
- What do you observe? How fast is the convergence? Can you explain your observations?

Distribution \#1

Distribution \#2

Can you make GMRES convergence very slowly by changing x_shift?

Distribution \#3

This matrix corresponds to rotations in different planes.

Try playing around with other eigenvalue distributions!

Hierarchical Matrices

- One fundamental property we use in hierarchical matrix calculation is that the Schur complement can be compressed during an LU/Cholesky factorization.
- Is that true in practice?
- What types of PDE satisfy this compression property?
- Let's investigate.

PDE solver

- Consider a regular mesh and a 5 point stencil for:

$$
-k^{2} T+e \cdot \nabla T-D \nabla^{2} T=\mathrm{RHS}
$$

- Let's do a Gaussian elimination (e.g., LU) on some part of the grid.

Schematic view of a 2D grid, partitioned into 9 subdomains

- Eliminate the center domain of the grid
- LU factorization where we eliminate rows \& columns associated with the center domain

$$
A=\left(\begin{array}{cc}
I & \\
U A_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} & \\
0 & A_{22}
\end{array}-U A_{11}^{-1} U^{T}\right)\left(\begin{array}{cc}
I & A_{11}^{-1} U^{T} \\
& I
\end{array}\right)
$$

- Points on the left and right boundaries become all connected.
- This forms a dense block in the matrix.
- A key assumption in Hierarchical Solvers is that this matrix must have low-rank blocks.
- Is that in fact the case?

Set up of benchmark

- Matrix of system, focusing on the 3 clusters, in the middle row:

$$
\left(\begin{array}{ccc}
A_{C C} & A_{C L} & A_{C R} \\
A_{L C} & A_{L L} & 0 \\
A_{R C} & 0 & A_{R R}
\end{array}\right)
$$

C: center; L: left; R: right

- Let's eliminate Acc

Low-rank assumption

$$
\left(\begin{array}{cc}
A_{L L}-A_{L C} A_{C C}^{-1} A_{C L} & -A_{L C} A_{C C}^{-1} A_{C R} \\
-A_{R C} A_{C C}^{-1} A_{C L} & A_{R R}-A_{R C} A_{C C}^{-1} A_{C R}
\end{array}\right)
$$

- For hierarchical solvers to be efficient, this block should be low-rank.
- Let's test this.

Case \#1

Pure diffusion equation.

$$
\begin{array}{ll}
\mathrm{k}=0 & \text { \# shift } \\
\mathrm{D}=1 & \text { \# diffusion } \\
\text { ex }=0 & \text { \# velocities } \\
\text { ey }=0 &
\end{array}
$$

Case \#2

Convection dominated

$$
\begin{array}{ll}
\mathrm{k}=0 & \text { \# shift } \\
\mathrm{D}=0.01 & \text { \# diffusion }
\end{array}
$$

$$
\begin{array}{cccc}
\text { ex } & 0.1 & 1 & 1 \\
\text { ey } & 1 & 1 & 0.1
\end{array}
$$

Case \#3

Oscillatory system

$$
\begin{aligned}
& \mathrm{D}=1 \quad \text { \# diffusion } \\
& \text { ex }=\text { ey }=0 \text { \# velocity }
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{k} & 0.1 & 0.5 & 2.5
\end{array}
$$

